Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Eur J Neurol ; 2023 Jun 13.
Article in English | MEDLINE | ID: covidwho-20238912

ABSTRACT

BACKGROUND AND PURPOSE: An enhanced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine regimen could improve humoral vaccine response in patients with multiple sclerosis (MS) treated by anti-CD20. The aim was to evaluate the serological response and the neutralizing activity after BNT162b2 primary and booster vaccination in MS patients, including patients on anti-CD20 receiving a primary vaccine regimen enhanced with three injections. METHODS: In this prospective longitudinal cohort study of 90 patients (47 on anti-CD20, 10 on fingolimod, 33 on natalizumab, dimethylfumarate or teriflunomide), anti-SARS-CoV-2 receptor binding domain (RBD) immunoglobulin G antibodies were quantified and their neutralization capacity was evaluated by enzyme-linked immunosorbent assay (GenScript) and a virus neutralization test against B.1 historical strain, Delta and Omicron variants, before and after three to four BNT162b2 injections. RESULTS: After the primary vaccination scheme, the anti-RBD positivity rate was strongly decreased in patients on anti-CD20 (28% [15%; 44%] after two shots, 45% [29%; 62%] after three shots) and fingolimod (50% [16%; 84%]) compared to other treatments (100% [90%; 100%]). Neutralization activity was also decreased in patients on anti-CD20 and fingolimod, and notably low for the Omicron variant in all patients (0%-22%). Delayed booster vaccination was performed in 54 patients, leading to a mild increase of anti-RBD seropositivity in patients on anti-CD20 although it was still lower compared to other treatments (65% [43%; 84%] vs. 100% [87%; 100%] respectively). After a booster, Omicron neutralization activity remained low on anti-CD20 and fingolimod treated patients but was strongly increased in patients on other treatments (91% [72%; 99%]). DISCUSSION: In MS patients on anti-CD20, an enhanced primary vaccination scheme moderately increased anti-RBD seropositivity and anti-RBD antibody titre, but neutralization activity remained modest even after a fourth booster injection. TRIAL REGISTRATION INFORMATION: COVIVAC-ID, NCT04844489, first patient included on 20 April 2021.

2.
Elife ; 122023 04 26.
Article in English | MEDLINE | ID: covidwho-2313805

ABSTRACT

Although France was one of the most affected European countries by the COVID-19 pandemic in 2020, the dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) movement within France, but also involving France in Europe and in the world, remain only partially characterized in this timeframe. Here, we analyzed GISAID deposited sequences from January 1 to December 31, 2020 (n = 638,706 sequences at the time of writing). To tackle the challenging number of sequences without the bias of analyzing a single subsample of sequences, we produced 100 subsamples of sequences and related phylogenetic trees from the whole dataset for different geographic scales (worldwide, European countries, and French administrative regions) and time periods (from January 1 to July 25, 2020, and from July 26 to December 31, 2020). We applied a maximum likelihood discrete trait phylogeographic method to date exchange events (i.e., a transition from one location to another one), to estimate the geographic spread of SARS-CoV-2 transmissions and lineages into, from and within France, Europe, and the world. The results unraveled two different patterns of exchange events between the first and second half of 2020. Throughout the year, Europe was systematically associated with most of the intercontinental exchanges. SARS-CoV-2 was mainly introduced into France from North America and Europe (mostly by Italy, Spain, the United Kingdom, Belgium, and Germany) during the first European epidemic wave. During the second wave, exchange events were limited to neighboring countries without strong intercontinental movement, but Russia widely exported the virus into Europe during the summer of 2020. France mostly exported B.1 and B.1.160 lineages, respectively, during the first and second European epidemic waves. At the level of French administrative regions, the Paris area was the main exporter during the first wave. But, for the second epidemic wave, it equally contributed to virus spread with Lyon area, the second most populated urban area after Paris in France. The main circulating lineages were similarly distributed among the French regions. To conclude, by enabling the inclusion of tens of thousands of viral sequences, this original phylodynamic method enabled us to robustly describe SARS-CoV-2 geographic spread through France, Europe, and worldwide in 2020.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Phylogeny , Pandemics , Europe/epidemiology , France/epidemiology
6.
Free Neuropathol ; 42023 Jan.
Article in English | MEDLINE | ID: covidwho-2252547

ABSTRACT

In a neuropathological series of 20 COVID-19 cases, we analyzed six cases (three biopsies and three autopsies) with multiple foci predominantly affecting the white matter as shown by MRI. The cases presented with microhemorrhages evocative of small artery diseases. This COVID-19 associated cerebral microangiopathy (CCM) was characterized by perivascular changes: arterioles were surrounded by vacuolized tissue, clustered macrophages, large axonal swellings and a crown arrangement of aquaporin-4 immunoreactivity. There was evidence of blood-brain-barrier leakage. Fibrinoid necrosis, vascular occlusion, perivascular cuffing and demyelination were absent. While no viral particle or viral RNA was found in the brain, the SARS-CoV-2 spike protein was detected in the Golgi apparatus of brain endothelial cells where it closely associated with furin, a host protease known to play a key role in virus replication. Endothelial cells in culture were not permissive to SARS-CoV-2 replication. The distribution of the spike protein in brain endothelial cells differed from that observed in pneumocytes. In the latter, the diffuse cytoplasmic labeling suggested a complete replication cycle with viral release, notably through the lysosomal pathway. In contrast, in cerebral endothelial cells the excretion cycle was blocked in the Golgi apparatus. Interruption of the excretion cycle could explain the difficulty of SARS-CoV-2 to infect endothelial cells in vitro and to produce viral RNA in the brain. Specific metabolism of the virus in brain endothelial cells could weaken the cell walls and eventually lead to the characteristic lesions of COVID-19 associated cerebral microangiopathy. Furin as a modulator of vascular permeability could provide some clues for the control of late effects of microangiopathy.

7.
Infect Dis Now ; 2022 Oct 30.
Article in English | MEDLINE | ID: covidwho-2283854

ABSTRACT

OBJECTIVES: We aimed to characterize and compare the viral loads (VL) of the Omicron BA.1 and BA.2 lineages and the Delta variant in nasopharyngeal samples from newly diagnosed COVID-19 patients and their kinetics over time. PATIENTS AND METHODS: The kinetics of the VL were measured on the CT data from 215 SARS-CoV-2 positive patients who presented at least two positive PCRs a day apart and were screened for SARS-CoV-2 viral lineages. RESULTS: We observed no significant difference in median CT value during the first diagnostic test between the Delta variant and the two Omicron lineages. However, the kinetics of CT decreases for the BA.1 and BA.2 lineage were significantly lengthier in time than the kinetics for the Delta variant. The BA.2 lineage presented lower median CT value (-2 CT) (inversely proportional to the VL) than the BA.1 lineage. CONCLUSIONS: BA.2 Omicron lineage presented higher VL than BA.1 Omicron lineage at diagnostic. Omicron BA.1 and BA.2 lineages have more prolonged replication than the Delta variant.

8.
Clin Microbiol Infect ; 29(4): 543.e5-543.e9, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2233015

ABSTRACT

OBJECTIVES: Our aim was to compare the clinical and virological outcomes in Omicron BA.1- and BA.2-infected patients who received sotrovimab with those in patients who received nirmatrelvir for the prevention of severe COVID-19. METHODS: In this multi-centric, prospective ANRS 0003S CoCoPrev cohort study, patients at a high risk of progression of mild-to-moderate BA.1 or BA.2 COVID-19 who received sotrovimab or nirmatrelvir were included. The proportion of patients with progression to severe COVID-19, time between the start of treatment to negative PCR conversion, SARS-CoV-2 viral decay, and characterization of resistance variants were determined. A multi-variable Cox proportional hazard model was used to determine the time to negative PCR conversion and a mixed-effect model for the dynamics of viral decay. RESULTS: Amongst 255 included patients, 199 (80%) received ≥3 vaccine doses, 195 (76%) received sotrovimab, and 60 (24%) received nirmatrelvir. On day 28, new COVID-19-related hospitalization occurred in 4 of 193 (2%; 95% CI, 1-5%) sotrovimab-treated patients and 0 of 55 nirmatrelvir-treated patients (p 0.24). One out of the 55 nirmatrelvir-treated patients died (2%; 95% CI, 0-10%). The median time to negative PCR conversion was 11.5 days (95% CI, 10.5-13) in the sotrovimab-treated patients vs. 4 days (95% CI, 4-9) in the nirmatrelvir-treated patients (p < 0.001). Viral decay was faster in the patients who received nirmatrelvir (p < 0.001). In the multi-variable analysis, nirmatrelvir and nasopharyngeal PCR cycle threshold values were independently associated with faster conversion to negative PCR (hazard ratio, 2.35; 95% CI, 1.56-3.56; p < 0.0001 and hazard ratio, 1.05; 95% CI, 1.01-1.08; p 0.01, respectively). CONCLUSIONS: Early administration of nirmatrelvir in high-risk patients compared with that of sotrovimab was associated with faster viral clearance. This may participate to decrease transmission and prevent viral resistance.


Subject(s)
COVID-19 , Humans , Cohort Studies , Prospective Studies , SARS-CoV-2/genetics , Polymerase Chain Reaction , Lactams , Leucine , Nitriles , COVID-19 Testing
9.
Microorganisms ; 11(1)2022 Dec 22.
Article in English | MEDLINE | ID: covidwho-2229010

ABSTRACT

SARS-CoV-2 expresses on its surface the Spike protein responsible for binding with the ACE2 receptor and which carries the majority of immunodominant epitopes. Mutations mainly affect this protein and can modify characteristics of the virus, giving each variant a unique profile concerning its transmissibility, virulence, and immune escape. The first lineage selected is the B.1 lineage characterized by the D614G substitution and from which all SARS-CoV-2 variants of concern have emerged. The first three variants of concern Alpha, Beta, and Gamma spread in early 2021: all shared the N501Y substitution. These variants were replaced by the Delta variant in summer 2021, carrying unique mutations like the L452R substitution and associated with higher virulence. It was in turn quickly replaced by the Omicron variant at the end of 2021, which has predominated since then, characterized by its large number of mutations. The successive appearance of variants of concern showed a dynamic evolution of SARS-CoV-2 through the selection and accumulation of mutations. This has not only allowed progressive improvement of the transmissibility of SARS-CoV-2, but has also participated in a better immune escape of the virus. This review brings together acquired knowledge about SARS-CoV-2 variants of concern and the impacts of the Spike mutations.

10.
Life (Basel) ; 12(12)2022 Dec 09.
Article in English | MEDLINE | ID: covidwho-2155189

ABSTRACT

The SARS-CoV-2 neutralizing antibodies response is the best indicator of effective protection after infection and/or vaccination, but its evaluation requires tedious cell-based experiments using an infectious virus. We analyzed, in 105 patients with various histories of SARS-CoV-2 infection and/or vaccination, the neutralizing response using a virus neutralization test (VNT) against B.1, Alpha, Beta and Omicron variants, and compared the results with two surrogate assays based on antibody-mediated blockage of the ACE2-RBD interaction (Lateral Flow Boditech and ELISA Genscript). The strongest response was observed for recovered COVID-19 patients receiving one vaccine dose. Naïve patients receiving 2 doses of mRNA vaccine also demonstrate high neutralization titers against B.1, Alpha and Beta variants, but only 34.3% displayed a neutralization activity against the Omicron variant. On the other hand, non-infected patients with half vaccination schedules displayed a weak and inconstant activity against all isolates. Non-vaccinated COVID-19 patients kept a neutralizing activity against B.1 and Alpha up to 12 months after recovery but a decreased activity against Beta and Omicron. Both surrogate assays displayed a good correlation with the VNT. However, an adaptation of the cut-off positivity was necessary, especially for the most resistant Beta and Omicron variants. We validated two simple and reliable surrogate neutralization assays, which may favorably replace cell-based methods, allowing functional analysis on a larger scale.

11.
Microbiol Spectr ; 10(5): e0192222, 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2038251

ABSTRACT

Large-scale screening for SARS-CoV-2 infection is an important tool for epidemic prevention and control. The appearance of new variants associated with specific mutations can call into question the effectiveness of rapid diagnostic tests (RDTs) deployed massively at national and international levels. We compared the clinical and virological characteristics of individuals infected by Delta or Omicron variants to assess which factors were associated with a reduced performance of RDT. A commercially available RDT as well as the evaluation of the viral load (VL) and the detection of replicate intermediates (RIs) were carried out retrospectively on positive SARS-CoV-2 nasopharyngeal specimens from health care workers of the Pitié-Salpêtrière Hospital infected by the Delta or Omicron variant between July 2021 and January 2022. Of the 205 samples analyzed (104 from individuals infected with Delta and 101 with Omicron), 176 were analyzed by RDT and 200 by RT-PCR for VL and RIs. The sensitivity of the TDR for Omicron was significantly lower than that observed for Delta (53.8% versus 74.7%, respectively, P < 0.01). Moreover, the Delta VL was significantly higher than that measured for Omicron (median Ct 21.2 versus 24.1, respectively, P < 0.01) and associated with the positivity of the RDT in multivariate analysis. We demonstrate a lower RDT sensitivity associated with a lower VL at the time of diagnosis on Omicron-infected individuals in comparison to those infected with the Delta variant. This RDT lower sensitivity should be taken into account in the large-scale screening strategy and in particular in case of strong suspicion of infection where testing should be repeated. IMPORTANCE Previous reports have shown a variability in the diagnostic performance of RDTs. In the era of SARS-CoV-2 variants and the use of RDT, mutation associated with these variants could affect the test performance. We evaluate the sensitivity of the RDT Panbio COVID-19 Ag (Abbott) with two variants of concern (VOC), the Delta and Omicron variants. In order to investigate whether clinical characteristics or virological characteristics can affect this sensitivity, we collected clinical information and performed a specific RT-PCR that detected the RIs as a marker of the viral replication and viral cycle stage. Our results showed that Omicron was less detected than the Delta variant. A lower viral load of Omicron variant in comparison to Delta variant explained this decreased sensitivity, even if they are at the same stage of the disease and the viral cycle and should be taken into account with the use of RDT as diagnostic tool.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Viral Load , Retrospective Studies , Sensitivity and Specificity , COVID-19/diagnosis
12.
AIDS ; 36(11): 1545-1552, 2022 Sep 01.
Article in English | MEDLINE | ID: covidwho-1992434

ABSTRACT

OBJECTIVES: To assess humoral responses to SARS-CoV-2 Delta-variant in people with HIV (PWH) after BNT162b2-vaccination. DESIGN: Multicenter cohort study of PWH with CD4 + cell count less than 500 cells/µl and viral load less than 50 copies/ml on stable antiretroviral therapy for at least 3 months. METHODS: Anti-SARS-CoV-2 receptor-binding-domain IgG antibodies (anti-RBD IgG) were quantified and neutralization capacity was evaluated by ELISA/GenScript and virus-neutralization-test against the D614G-strain, beta and delta variants before vaccination (day 0) and 1 month after complete schedule (M1). RESULTS: We enrolled 97 PWH, 85 received two vaccine shots. The seroconversion rate for anti-RBD IgG was 97% [95% confidence interval (CI) 90-100%] at M1. Median (IQR) anti-RBD IgG titer was 0.97 (0.97-5.3) BAU/ml at D0 and 1219 (602-1929) at M1. Neutralization capacity improved between D0 (15%; 50% CI 8-23%) and M1 (94%; 95% CI 87-98%) ( P  < 0.0001). At M1, NAbs against the D614G strain, beta and delta variants were present in 82, 77, and 84% PWH, respectively. The seroconversion rate and median anti-RBD-IgG level were 91% and 852 BAU/ml, respectively, in PWH with CD4 + cell count less than 250 ( n  = 13) and 98% and 1270 BAU/ml for CD4 + greater than 250 ( n  = 64) ( P  = 0.3994). NAbs were present in 73% of PWH with CD4 + less than 250 and 97% of those with CD4 + cell count greater than 250 ( P  = 0.0130). NAbs against beta variant were elicited in 50% in PWH with CD4 + cell count less than 250 and in 81% of those with CD4 + cell count greater than 250 ( P  = 0.0292). CD4 + and CD8 + T-cell counts were unchanged, whereas CD19 + B-cell counts decreased after vaccination(208 ±â€Š124 at D0 vs. 188 ±â€Š112 at M1, P  < 0.01). No notable adverse effects or COVID-19 cases were reported. CONCLUSION: Seroconversion rates were high, with delta-neutralization rates similar to those for the D61G strain, after a two-dose BNT162b2 vaccination in PWH.


Subject(s)
COVID-19 , HIV Infections , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Cohort Studies , Humans , Immunoglobulin G , SARS-CoV-2 , Seroconversion , Vaccination
13.
Microbiol Res ; 263: 127133, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1956271

ABSTRACT

OBJECTIVES: Despite the quick implementation of infection prevention and control procedures and the use of personal protective equipment within healthcare facilities, many cases of nosocomial COVID-19 transmission have been reported. We aimed to estimate the frequency and impact of healthcare-associated COVID-19 (HA-COVID-19) and evaluate the contribution of whole-genome sequencing (WGS) in cluster investigation. METHODS: We estimated the frequency and mortality of HA-COVID-19 infections from September 1 to November 30, 2020, with a focus on the evolution of hospitalized community-associated COVID-19 (CA-COVID-19) cases and cases detected among healthcare workers (HCWs) within the Sorbonne University Hospital Group (Paris, France). We thoroughly examined 12 clusters through epidemiological investigations and WGS. RESULTS: Overall, 209 cases of HA-COVID-19 were reported. Evolution of HA-COVID-19 incidence closely correlated with the incidence of CA-COVID-19 and COVID-19 among HCWs. During the study period, 13.9 % of hospitalized patients with COVID-19 were infected in the hospital and the 30-day mortality rate of HA-COVID-19 was 31.5 %. Nosocomial transmission of SARS-CoV-2 led to clusters involving both patients and HCWs. WGS allowed the exclusion of one-third of cases initially assigned to a cluster. CONCLUSIONS: WGS analysis combined with comprehensive epidemiological investigations is essential to understand transmission routes and adapt the IPC response to protect both patients and HCWs.


Subject(s)
COVID-19 , Cross Infection , COVID-19/epidemiology , Cross Infection/epidemiology , Delivery of Health Care , Hospitals , Humans , SARS-CoV-2/genetics
14.
Viruses ; 14(7)2022 07 13.
Article in English | MEDLINE | ID: covidwho-1939016

ABSTRACT

The SARS-CoV-2 variant of concern, α, spread worldwide at the beginning of 2021. It was suggested that this variant was associated with a higher risk of mortality than other variants. We aimed to characterize the genetic diversity of SARS-CoV-2 variants isolated from patients with severe COVID-19 and unravel the relationships between specific viral mutations/mutational patterns and clinical outcomes. This is a prospective multicenter observational cohort study. Patients aged ≥18 years admitted to 11 intensive care units (ICUs) in hospitals in the Greater Paris area for SARS-CoV-2 infection and acute respiratory failure between 1 October 2020 and 30 May 2021 were included. The primary clinical endpoint was day-28 mortality. Full-length SARS-CoV-2 genomes were sequenced by means of next-generation sequencing (Illumina COVIDSeq). In total, 413 patients were included, 183 (44.3%) were infected with pre-existing variants, 197 (47.7%) were infected with variant α, and 33 (8.0%) were infected with other variants. The patients infected with pre-existing variants were significantly older (64.9 ± 11.9 vs. 60.5 ± 11.8 years; p = 0.0005) and had more frequent COPD (11.5% vs. 4.1%; p = 0.009) and higher SOFA scores (4 [3-8] vs. 3 [2-4]; 0.0002). The day-28 mortality was no different between the patients infected with pre-existing, α, or other variants (31.1% vs. 26.2% vs. 30.3%; p = 0.550). There was no association between day-28 mortality and specific variants or the presence of specific mutations. At ICU admission, the patients infected with pre-existing variants had a different clinical presentation from those infected with variant α, but mortality did not differ between these groups. There was no association between specific variants or SARS-CoV-2 genome mutational pattern and day-28 mortality.


Subject(s)
COVID-19 , SARS-CoV-2 , Adolescent , Adult , Critical Illness , Genomics , Humans , Prospective Studies , SARS-CoV-2/genetics
15.
J Am Coll Cardiol ; 80(4): 299-312, 2022 07 26.
Article in English | MEDLINE | ID: covidwho-1930909

ABSTRACT

BACKGROUND: Adults who have been infected with SARS-CoV-2 can develop a multisystem inflammatory syndrome (MIS-A), including fulminant myocarditis. Yet, several patients fail to meet MIS-A criteria, suggesting the existence of distinct phenotypes in fulminant COVID-19-related myocarditis. OBJECTIVES: This study sought to compare the characteristics and clinical outcome between patients with fulminant COVID-19-related myocarditis fulfilling MIS-A criteria (MIS-A+) or not (MIS-A-). METHODS: A monocentric retrospective analysis of consecutive fulminant COVID-19-related myocarditis in a 26-bed intensive care unit (ICU). RESULTS: Between March 2020 and June 2021, 38 patients required ICU admission (male 66%; mean age 32 ± 15 years) for suspected fulminant COVID-19-related myocarditis. In-ICU treatment for organ failure included dobutamine 79%, norepinephrine 60%, mechanical ventilation 50%, venoarterial extracorporeal membrane oxygenation 42%, and renal replacement therapy 29%. In-hospital mortality was 13%. Twenty-five patients (66%) met the MIS-A criteria. MIS-A- patients compared with MIS-A+ patients were characterized by a shorter delay between COVID-19 symptoms onset and myocarditis, a lower left ventricular ejection fraction, and a higher rate of in-ICU organ failure, and were more likely to require mechanical circulatory support with venoarterial extracorporeal membrane oxygenation (92% vs 16%; P < 0.0001). In-hospital mortality was higher in MIS-A- patients (31% vs 4%). MIS-A+ had higher circulating levels of interleukin (IL)-22, IL-17, and tumor necrosis factor-α (TNF-α), whereas MIS-A- had higher interferon-α2 (IFN-α2) and IL-8 levels. RNA polymerase III autoantibodies were present in 7 of 13 MIS-A- patients (54%) but in none of the MIS-A+ patients. CONCLUSION: MIS-A+ and MIS-A- fulminant COVID-19-related myocarditis patients have 2 distinct phenotypes with different clinical presentations, prognosis, and immunological profiles. Differentiating these 2 phenotypes is relevant for patients' management and further understanding of their pathophysiology.


Subject(s)
COVID-19 , Myocarditis , Adolescent , Adult , Autoantibodies , COVID-19/complications , Female , Humans , Male , Middle Aged , Myocarditis/diagnosis , Myocarditis/etiology , Myocarditis/therapy , Phenotype , Retrospective Studies , SARS-CoV-2 , Stroke Volume , Systemic Inflammatory Response Syndrome , Ventricular Function, Left , Young Adult
17.
Sci Rep ; 12(1): 7211, 2022 05 04.
Article in English | MEDLINE | ID: covidwho-1890241

ABSTRACT

With the COVID-19 pandemic, documenting whether health care workers (HCWs) are at increased risk of SARS-CoV-2 contamination and identifying risk factors is of major concern. In this multicenter prospective cohort study, HCWs from frontline departments were included in March and April 2020 and followed for 3 months. SARS-CoV-2 serology was performed at month 0 (M0), M1, and M3 and RT-PCR in case of symptoms. The primary outcome was laboratory-confirmed SARS-CoV-2 infection at M3. Risk factors of laboratory-confirmed SARS-CoV-2 infection at M3 were identified by multivariate logistic regression. Among 1062 HCWs (median [interquartile range] age, 33 [28-42] years; 758 [71.4%] women; 321 [30.2%] physicians), the cumulative incidence of SARS-CoV-2 infection at M3 was 14.6% (95% confidence interval [CI] [12.5; 16.9]). Risk factors were the working department specialty, with increased risk for intensive care units (odds ratio 1.80, 95% CI [0.38; 8.58]), emergency departments (3.91 [0.83; 18.43]) and infectious diseases departments (4.22 [0.92; 18.28]); current smoking was associated with reduced risk (0.36 [0.21; 0.63]). Age, sex, professional category, number of years of experience in the job or department, and public transportation use were not significantly associated with laboratory-confirmed SARS-CoV-2 infection at M3. The rate of SARS-CoV-2 infection in frontline HCWs was 14.6% at the end of the first COVID-19 wave in Paris and occurred mainly early. The study argues for an origin of professional in addition to private life contamination and therefore including HCWs in the first-line vaccination target population. It also highlights that smokers were at lower risk.Trial registration The study has been registered on ClinicalTrials.gov: NCT04304690 first registered on 11/03/2020.


Subject(s)
COVID-19 , Melanthiaceae , Adult , COVID-19/epidemiology , Cohort Studies , Female , Health Personnel , Humans , Incidence , Male , Pandemics , Paris/epidemiology , Prospective Studies , Risk Factors , SARS-CoV-2
19.
Front Immunol ; 13: 844727, 2022.
Article in English | MEDLINE | ID: covidwho-1834403

ABSTRACT

The immunopathological pulmonary mechanisms leading to Coronavirus Disease (COVID-19)-related death in adults remain poorly understood. Bronchoalveolar lavage (BAL) and peripheral blood sampling were performed in 74 steroid and non-steroid-treated intensive care unit (ICU) patients (23-75 years; 44 survivors). Peripheral effector SARS-CoV-2-specific T cells were detected in 34/58 cases, mainly directed against the S1 portion of the spike protein. The BAL lymphocytosis consisted of T cells, while the mean CD4/CD8 ratio was 1.80 in non-steroid- treated patients and 1.14 in steroid-treated patients. Moreover, strong BAL SARS-CoV-2 specific T-cell responses were detected in 4/4 surviving and 3/3 non-surviving patients. Serum IFN-γ and IL-6 levels were decreased in steroid-treated patients when compared to non-steroid treated patients. In the lung samples from 3 (1 non-ICU and 2 ICU) additional deceased cases, a lymphocytic memory CD4 T-cell angiopathy colocalizing with SARS-CoV-2 was also observed. Taken together, these data show that disease severity occurs despite strong antiviral CD4 T cell-specific responses migrating to the lung, which could suggest a pathogenic role for perivascular memory CD4 T cells upon fatal COVID-19 pneumonia.


Subject(s)
COVID-19 , Pneumonia , Adult , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Humans , Lung , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL